Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Yang Qu, ${ }^{\text {a,b }}$ Zhao-Di Liu, ${ }^{\text {a,b }}$
Hai-Liang Zhu ${ }^{\mathbf{a} *}$ and Min-Yu Tan ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail:
hailiang_zhu@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.053$
$w R$ factor $=0.160$
Data-to-parameter ratio $=13.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexaaquanickel(II) bis(p-nitrobenzoate) dihydrate

In the title complex, $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] L_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, where L is p nitrobenzoate $\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)$, each $\mathrm{Ni}^{\text {II }}$ cation lies on an inversion center and is octahedrally coordinated by six water molecules. The L^{-}anions do not coordinate to the nickel, but act as counter-anions. The crystal structure is composed of alternating layers of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations and L anions. The $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations, water molecules and L^{-}anions are connected through a complex pattern of hydrogen-bonding interactions, resulting in a three-dimensional network.

Comment

For many purposes, including catalysis, it is desirable to utilize transition metal complexes that contain anions which coordinate weakly or not at all (Batsanov et al., 2001). We report here the structure of the nickel complex $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] L_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, where L is p-nitrobenzoate. The single-crystal X-ray structure analysis indicates that the crystal structure is built up of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations, two uncoordinated L anions and two uncoordinated water molecules. Each $\mathrm{Ni}^{\mathrm{II}}$ atom lies on an inversion center and is hexacoordinated by the six aqua ligands. The $\mathrm{Ni}-\mathrm{O}$ distances range from 2.097 (3) to 2.137 (2) \AA. The mean $\mathrm{Ni}-\mathrm{O}$ distance of 2.117 (3) \AA is longer than the values observed in other nickel compounds (Ma et al., 2003). The three trans angles in the Ni octahedron are $177.40(18), 173.82(11)$ and $173.82(11)^{\circ}$. The cis angles around the $\mathrm{Ni}^{\mathrm{II}}$ atom deviate slightly from the ideal angle of 90° [85.02 (11)-93.97(19) ${ }^{\circ}$]; thus, the Ni coordination center has a slightly distorted octahedral geometry. Selected bond lengths and angles are given in Table 1. The alternating layers of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations and L anions in (I) are shown in Fig. 2. Selected hydrogen-bond parameters are listed in Table 1.

(I)

Experimental

All reagents and solvents were used as obtained without further purification. $\mathrm{Ni}(\mathrm{OH})_{2}(0.3 \mathrm{mmol}, 52 \mathrm{mg})$ and p-nitrobenzoic acid $(0.6 \mathrm{mmol}, 86 \mathrm{mg})$ were dissolved in ammonia (15 ml). The mixture was stirred for about 1 h to obtain a clear blue solution. After allowing the solution to stand in air for two weeks with ammonia gas escaping, large light-blue crystals were formed, The product was isolated, washed three times with water, and dried in a vacuum desiccator using $\mathrm{P}_{4} \mathrm{O}_{10}$ (yield 56\%). Elemental analysis found: C 31.36, H 4.66, N 5.30, Ni 10.84; calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NiN}_{2} \mathrm{O}_{16}$: C 31.43, H 4.52, N 5.24, Ni 10.97%.

Received 5 July 2004 Accepted 16 July 2004 Online 21 August 2004

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=535.06$
Monoclinic, C2/c
$a=29.030$ (6) A
$b=7.0550(14) \AA$
$c=11.916$ (2) \AA
$\beta=112.85(3)^{\circ}$
$V=2249.0(8) \AA^{3}$
$Z=4$
$D_{x}=1.580 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 60
reflections
$\theta=2.5-24.4^{\circ}$
$\mu=0.94 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, light blue
$0.42 \times 0.27 \times 0.26 \mathrm{~mm}$

Data collection

Bruker SMART diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.744, T_{\text {max }}=0.782$
4473 measured reflections
1986 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.160$
$S=1.08$
1986 reflections
150 parameters
H -atom parameters constrained
Table 1
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 8^{\text {i }}$	0.85	2.23	2.777 (4)	122
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 7^{\text {ii }}$	0.85	2.62	3.255 (5)	132
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O}^{\text {iii }}$	0.85	1.88	2.680 (4)	156
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O}^{\text {iv }}$	0.85	2.46	3.221 (5)	149
O6-H6C $\cdots \mathrm{O}^{\text {v }}$	0.85	2.43	3.193 (5)	150
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O}^{\text {v }}$	0.85	2.58	3.417 (5)	168
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{C} \cdots \mathrm{O}^{\text {vi }}$	0.85	2.31	3.092 (5)	154
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 2^{\text {vii }}$	0.85	2.16	2.790 (4)	131
O8-H8B \cdots O1	0.85	2.14	2.710 (5)	125

Symmetry codes: (i) $x, y-1, z$; (ii) $x,-y, z-\frac{1}{2}$; (iii) $-x, y-1, \frac{1}{2}-z$; (iv) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z ;$ (v) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$; (vi) $-x, y, \frac{1}{2}-z$; (vii) $x, 1-y, z-\frac{1}{2}$.

The H atoms bonded to C and O atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $\mathrm{O}-\mathrm{H}=0.85 \AA$. The $U_{\text {iso }}(\mathrm{H})$ values were fixed at $0.08 \AA^{2}$.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. 2004kj300zd.

Figure 1
View of the asymmetric unit of (I), expanded to show the complete coordination of $\mathrm{Ni}^{\mathrm{II}}$, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) $-x, y, \frac{1}{2}-z 2$.]

Figure 2
The packing of (I), viewed along the a axis.

References

Batsanov, A. S., Howard, J. A. K., Moore, N. S. \& Kilner, M.(2001). Acta Cryst. E57, m485-m487.
Ma, J. F., Yang, J. \& Liu, J. F. (2003). Acta Cryst. E59, m483-m484.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

